El mercado de entornos de vida mejorados para adultos mayores a través de la detección de bacterias patógenas en agua y alimentos: una revisión para incorporar biosensores QCM
Publicado 2023-04-13
Palabras clave
- Mercado, entornos de vida mejorados, adultos mayores, bacterias patógenas, agua, alimentos, biosensores, QCM
Cómo citar
Resumen
La tecnología basada en sensores y redes de sensores se ha aplicado para el mejoramiento de entornos de vida de adultos mayores; monitorear la calidad e inocuidad del agua y los alimentos que consumen para garantizar la seguridad alimentaria en este segmento poblacional con una perspectiva de vida asistida por el ambiente, conocida como Ambient Assisted Living (AAL), es un elemento que amplía la perspectiva de mercado para cuidado y asistencia médica, desde los sensores su diseño e implementación. El presente artículo, en consecuencia, parte de una revisión de los elementos de seguridad alimentaria: desde el tema nutricional, pasando por patógenos, y por consiguiente las enfermedades de adultos mayores considerando acceso, seguridad y preferencias, para llevar a cabo una vida activa y sana; desde la perspectiva de AAL, se establece una revisión sobre biosensores, específicamente el sensor tipo QCM (Quartz Crystal Microbalance), el cual es usado en la detección de patógenos. Luego, a partir del comportamiento eléctrico y físico o TSM (Thickness Shear Mode), se exhibe cómo, desde la modificación y simulación de variables -frecuencia de resonancia e inductancia- se pueden diseñar e implementar alternativas de modo situado.
Descargas
Citas
- Aguilar R. W., & Salas Parra, D. M. Diseño e implementación de un instrumento para la medición de micromasas basado en el principio de biosensores QCM. [Tesis de pregrado, Universidad Distrital Francisco José de Caldas].
- https://repository.udistrital.edu.co/bitstream/handle/11349/29045/AguilarRomeroWilmer2021.pdf?sequence=1&isAllowed=y
- Ailes, E. C., Vugia, D. J., & Segler, S. D. (2005). Rates of hospitalization for specific foodborne pathogens, FoodNet, 1996–2001. http://www.cdc.gov/foodnet/pub/publications/2004/ailes_2004.pdf.
- Akgönüllü, S., Özgür, E., & Denizli, A. (2022). Recent advances in quartz crystal microbalance biosensors based on the molecular imprinting technique for disease-related biomarkers. Chemosensors, 10(3), 106. doi: 10.3390/chemosensors10030106.
- Alamer, S., Eissa, S., Chinnappan, R., Herron, P., & Zourob, M. (2018). Rapid colorimetric lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria. Talanta, 185, 275-280.
- Ali, A. A., Altemimi, A. B., Alhelfi, N., & Ibrahim, S. A. (2020). Application of biosensors for detection of pathogenic food bacteria: a review. Biosensors, 10(6), 58.
- Amani, J., Mirhosseini, S. A., & Fooladi, A. A. I. (2015). A review approaches to identify enteric bacterial pathogens. Jundishapur journal of microbiology, 8(2).
- Bajwa, A., Tan, S. T., Parameswaran, A. M., & Bahreyni, B. (2013, June). Automated rapid detection of foodborne pathogens. In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) (pp. 337-340). IEEE. doi: 10.1109/Transducers.2013.6626771.
- Baker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & Martinez-Urtaza, J. (2018). Vibrio spp. infections. Nature Reviews Disease Primers, 4(1), 1-19. https://www.nature.com/articles/s41572-018-0005-8
- Barrientos-Urdinola, K. (2019). Desarrollo de un genosensor piezoeléctrico. [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77465.
- Bayramoglu, G., Ozalp, V. C., Oztekin, M., & Arica, M. Y. (2019). Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta, 200, 263-271. doi: 10.1016/j.talanta.2019.03.048.
- Beleño Cabarcas, M. T. (2019). Desarrollo de sensores y biosensores electroquímicos para la vigilancia medioambiental. [Disertación doctoral, Universidad Autónoma de Baja California]. https://repositorioinstitucional.uabc.mx/server/api/core/bitstreams/1f96294b-e5af-47f6-b8cc-e41333b37a60/content
- Bitar, K. N., & Patil, S. B. (2004). Aging and gastrointestinal smooth muscle. Mechanisms of ageing and development, 125(12), 907-910.
- Boris, M., Alvaro C., Camilo H., Arley P. (2021) Monitoreo de calidad del agua en sistema de agua potable rural. Revista Ingeniería Electrónica, Automática y Comunicaciones. Instituto Superior Politécnico “José Antonio Echeverría.” 42(3).
- Bwambok, D. K., Siraj, N., Macchi, S., Larm, N. E., Baker, G. A., Pérez, R. L., ... & Fakayode, S. O. (2020). QCM sensor arrays, electroanalytical techniques and NIR spectroscopy coupled to multivariate analysis for quality assessment of food products, raw materials, ingredients and foodborne pathogen detection: Challenges and breakthroughs. Sensors, 20(23), 6982. doi: 10.3390/s20236982.
- Cakir, O., Bakhshpour, M., Yilmaz, F., & Baysal, Z. (2019). Novel QCM and SPR sensors based on molecular imprinting for highly sensitive and selective detection of 2, 4-dichlorophenoxyacetic acid in apple samples. Materials Science and Engineering: C, 102, 483-491. doi: 10.1016/j.msec.2019.04.056.
- Calero Alcarria, M. D. S. (2022). Development of a novel high resolution and high throughput biosensing technology based on a Monolithic High Fundamental Frequency Quartz Crystal Microbalance (MHFF-QCM). Validation in food control [Doctoral dissertation, Universitat Politècnica de València].
- Carvajal Ahumada, L. A. (2017). Diseño y evaluación de un biosensor basado en resonadores de cristal de cuarzo (QCR) para caracterizar muestras biológicas relacionadas con enfermedades artríticas [Tesis doctoral, Universidad Politécnica de Madrid]. https://oa.upm.es/46333/1/LUIS_ARMANDO_CARVAJAL_AHUMANDA_2.pdf
- Castle, S. C. (2000). Impact of age-related immune dysfunction on risk of infections. Zeitschrift fur Gerontologie und Geriatrie, 33(5), 341-349. doi: 10.1007/s003910070030. PMID: 11130187.
- Centers for Disease Control and Prevention (CDC. (2002). Preliminary FoodNet data on the incidence of foodborne illnesses--selected sites, United States, 2001. MMWR. Morbidity and mortality weekly report, 51(15), 325-329.
- Centers for Disease Control and Prevention, CDC. (2002). Preliminary FoodNet data on the incidence of foodborne illnesses--selected sites, United States, 2001. MMWR. Morbidity and mortality weekly report, 51(15), 325-329.
- Cervera‐Chiner, L., March, C., Arnau, A., Jiménez, Y., & Montoya, Á. (2020). Detection of DDT and carbaryl pesticides in honey by means of immunosensors based on high fundamental frequency quartz crystal microbalance (HFF‐QCM). Journal of the Science of Food and Agriculture, 100(6), 2468-2472. doi: 10.1002/jsfa.10267
- Chandra, R. (1995). Nutrition and immunity in the elderly: clinical significance. Nutrition reviews, 53(4), S80-S85. https://doi.org/10.1111/j.1753-4887.1995.tb01522.x
- Chauhan, S., Jain, U. et. al. (2019). Sensors for food quality monitoring. En Nanoscience for Sustainable Agriculture, pp. 601–626.
- Chen Y. et al. (2018). Recent advances in rapid pathogen detection method based on biosensors,” Eur. J. Clin. Microbiol. Infect. Dis 37(6,) p. 1021–1037, doi: 10.1007/s10096-018-3230-x.
- Chen, W., Wang, Z., Gu, S., Wang, J., Wang, Y., & Wei, Z. (2020). Detection of hexanal and 1-octen-3-ol in refrigerated grass carp fillets using a QCM gas sensor based on hydrophobic Cu (I)-Cys nanocomposite. Sensors and Actuators B: Chemical, 305, 127476.
- Choi, I. et al. (2020). Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor, J. Anim. Sci. Technol. 62 (5), 668-681. doi: 10.5187/jast.2020.62.5.668
- Cossettini, A., Vidic, J., Maifreni, M., Marino, M., Pinamonti, D., & Manzano, M. (2022). Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control, 137, 108962.
- DANE. (2018). Censo nacional de población y vivienda. ¿Cuántos somos? DANE.
- DANE. (2020). Encuesta Nacional de Calidad de Vida- ECV. DANE.
- DANE. (2020). Gran Encuesta Integrada de Hogares. DANE.
- DANE. (2021). Encuesta Nacional del Uso del Tiempo. DANE.
- DANE. (2021). Personas mayores en Colombia: Hacia la inclusión y la participación. DANE. Nota Estadística.
- De Sousa C, y Manganiello, L. (2018). Review: Piezoelectric sensors applications in the detection of Contaminants. En Food. Ing. Uc 25(3), p. 433–447.
- De Sousa, C., Manganiello, L., Millán, A., Vega, C., & Yanez-Vergara, W. (2021). Design and characterization of a rapid response system based on piezoelectric detection. Revista Ingeniería Universidad de Carabobo, 28(3), 418-427.
- Deng, F., Chen, W., Wang, J., & Wei, Z. (2018). Fabrication of a sensor array based on quartz crystal microbalance and the application in egg shelf life evaluation. Sensors and Actuators B: Chemical, 265, 394-402. doi: 10.1016/j.snb.2018.03.010.
- Department of Health & Social Care. (2022). Guidance Infection prevention and control: resource for adult social care. Home Infection prevention and control in adult social care settings. Department of Health & Social Care.
- https://www.gov.uk/government/publications/infection-prevention-and-control-in-adult-social-care-settings
- Dhull, N. et al. (2019). Label-free amperometric biosensor for Escherichia coli O157: H7 detection, Appl. Surf. Sci. 495, 143548.
- Dinh, T., & Veves, A. (2005). Microcirculation of the diabetic foot. Current pharmaceutical design, 11(18), 2301-2309. doi: 10.2174/1381612054367328.
- Donskey, C. J. (2004). The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clinical infectious diseases, 39(2), 219-226.
- Dwivedi, H. Jaykus, L. (2011). Detection of pathogens in foods: the current state-of-the-art and future directions. Crit. Rev. Microbiol. 37(1), p. 40–63.
- Elahi, N. et al. (2019). A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. Mater. Sci. Eng. C 105, 110113.
- Ershler, W. B. (2003). Cancer: a disease of the elderly. The journal of supportive oncology, 1(4 Suppl 2), 5-10.
- Eshun, G. B., Crapo, H. A., Yazgan, I., Cronmiller, L., & Sadik, O. A. (2023). Sugar–lectin interactions for direct and selective detection of Escherichia coli bacteria using QCM biosensor. Biosensors, 13(3), 337. doi: 10.3390/bios13030337.
- Espinosa Ramírez, A. J. (2021). El agua, un reto para la salud pública: la calidad del agua y las oportunidades para la vigilancia en salud ambiental. [Disertación doctoral, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63149.
- Fernández C., S. (2022). Generación de películas nanoestructuradas Langmuir-Blodgett y su uso como sensores electroquímicos. (Tesis de maestría, Universidad de Valladolid). https://uvadoc.uva.es/handle/10324/57867.
- Flores Mollo, S., & Aracena Pizarro, D. (2018). Sistema de monitoreo remoto de acuicultura en estanques para la crianza de camarones. Ingeniare. Revista chilena de ingeniería, 26, 55-64. doi: 10.4067/S0718-33052018000500055.
- Flórez Revuelta, F. (2008). Vida asistida por el entorno. Revista Informativa de la Asociación Profesional Española de Terapeutas Ocupacionales, 12-17.
- Foddai, A. C., & Grant, I. R. (2020). Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Applied Microbiology and Biotechnology, 104, 4281-4288.
- Franz, C. et al. (2019). Microbial food safety in the 21st century: emerging challenges and foodborne pathogenic bacteria. Trends Food Science Technology 84, p. 34–37.
- Fujihashi, K., & McGhee, J. R. (2004). Mucosal immunity and tolerance in the elderly. Mechanisms of ageing and development, 125(12), 889-898. doi: 10.1016/j.mad.2004.05.009.
- Fulgione, A., Cimafonte, M., Della Ventura, B., Iannaccone, M., Ambrosino, C., Capuano, F., ... & Capparelli, R. (2018). QCM-based immunosensor for rapid detection of Salmonella Typhimurium in food. Scientific reports, 8(1), 16137. doi: 10.1038/s41598-018-34285-y.
- García-Castro, J., & Ascón-Dionisio, G. (2022). Sistema automatizado de monitoreo de parámetros físico-químicos en producción de alevines Gamitana (Colossoma macropomum). Revista agrotecnológica amazónica, 2(1), e240-e240. doi: 10.51252/raa. v2i1.240.
- Gettings, M. A., & Kiernan, N. E. (2001). Practices and perceptions of food safety among seniors who prepare meals at home. Journal of Nutrition Education, 33(3), 148-154.
- González T. (2020). Comprobación y ajuste de modelo sobre efecto de la variación de temperatura en una microbalanza de cristal de cuarzo (QCM). [Tesis de pregrado, Universidad EIA]. https://repository.eia.edu.co/handle/11190/2728.
- Han, Y., Chun, J., & Yoon H. (2020). Low-cost point-of-care biosensors using common electronic components as transducers, BioChip Journal 14(1), p. 32–47.
- Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., ... & World Health Organization Foodborne Disease Burden Epidemiology Reference Group. (2015). World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS medicine, 12(12), e1001923. doi.org/10.1371/journal.pmed.1001923.
- Henao, O. L., Jones, T. F., Vugia, D. J., & Griffin, P. M. (2015). Foodborne diseases active surveillance network—2 decades of achievements, 1996–2015. Emerging infectious diseases, 21(9), 1529. http://www.cdc.gov/foodnet/pub/publications/2005/FNsurv2003.pdf.
- High, K. P. (2004). Infection as a cause of age-related morbidity and mortality. Ageing Research Reviews, 3(1), 1-14.
- Holmes, C., El-Okl, M., Williams, A. L., Cunningham, C., Wilcockson, D., & Perry, V. H. (2003). Systemic infection, interleukin 1β, and cognitive decline in Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 74(6), 788-789. doi: 10.1136/jnnp.74.6.788.
- Hossain, S. Z., & Mansour, N. (2019). Biosensors for on-line water quality monitoring–a review. Arab Journal of Basic and Applied Sciences, 26(1), 502-518. doi: 10.1080/25765299.2019.1691434.
- Jiménez, C., & León, D. E. (2009). Biosensores: Aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios. Vitae, 16(1), 144-154. https://www.redalyc.org/pdf/1698/169815393016.pdf.
- Jiménez-Rodríguez, M. G., Silva-Lance, F., Parra-Arroyo, L., Medina-Salazar, D. A., Martínez-Ruiz, M., Melchor-Martínez, E. M., ... & Sosa-Hernández, J. E. (2022). Biosensors for the detection of disease outbreaks through wastewater-based epidemiology. TrAC Trends in Analytical Chemistry, 155, 116585. doi: 10.1016/j.trac.2022.116585.
- Joshi, H., Kandari, D., Maitra, S. S., & Bhatnagar, R. (2022). Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Critical Reviews in Microbiology, 48(6), 784-812. Doi: 10.1080/1040841X.2022.2035314.
- Karch, H., Denamur, E., Dobrindt, U., Finlay, B. B., Hengge, R., Johannes, L., ... & Vicente, M. (2012). The enemy within us: lessons from the 2011 European Escherichia coli O104: H4 outbreak. EMBO molecular medicine, 4(9), 841-848. https://doi.org/10.1002/emmm.201201662.
- Karczmarczyk, A., Haupt, K., & Feller, K. H. (2017). Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta, 166, 193-197. doi: 10.1016/j.talanta.2017.01.054.
- Keisler-Starkey, K., & Bunch, L. N. (2022). Health insurance coverage in the United States: 2021. Washington, DC: US Census Bureau. https://www.census.gov/content/dam/Census/library/publications/2022/demo/p60-278.pdf
- Kennedy, M., Villar, R., Vugia, D. J., Rabatsky-Ehr, T., Farley, M. M., Pass, M., ... & Emerging Infections Program FoodNet Working Group. (2004). Hospitalizations and deaths due to Salmonella infections, FoodNet, 1996–1999. Clinical Infectious Diseases, 38(Supplement_3), S142-S148.
- Khanna, K. V., & Markham, R. B. (1999). A perspective on cellular immunity in the elderly. Clinical infectious diseases, 28(4), 710-713. https://doi.org/10.1086/515206
- Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., ... & Angulo, F. J. (2015). World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS medicine, 12(12), e1001921. https://doi.org/10.1371/journal.pmed.1001921.
- Koopmans M, Duizer E. Foodborne viruses: an emerging problem. Int J Food Microbiol 2004; 90:23–41.
- Koopmans, M., & Duizer, E. (2004). Foodborne viruses: an emerging problem. International journal of food microbiology, 90(1), 23-41.
- Krejcova, L., Michalek, P., Rodrigo, M. M., Heger, Z., Krizkova, S., Vaculovicova, M., ... & Kizek, R. (2015). Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis, 47-66. doi: 10.2147/ndd.s56771.
- Kumar, A., Malinee, M., Dhiman, A., Kumar, A., & Sharma, T. K. (2019). Aptamer technology for the detection of foodborne pathogens and toxins. En Advanced biosensors for health care applications. p. 45-69.
- Kumar, H., Bhardwaj, K., Kaur, T., Nepovimova, E., Kuča, K., Kumar, V., ... & Kumar, D. (2020). Detection of bacterial pathogens and antibiotic residues in chicken meat: a review. Foods, 9(10), 1504.
- Lamanna, L. et al. (2020). Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film. Biosens. Bioelectron. 163, 112164.
- Lamas, A. et al. (2019). Transcriptomics: a powerful tool to evaluate the behavior of foodborne pathogens in the food production chain, Food Res. Int. 125, 108543.
- Leffler, D. A., & Lamont, J. T. (2015). Clostridium difficile infection. New England Journal of Medicine, 372(16), 1539-1548.
- Lesourd, B. M. (1997). Nutrition and immunity in the elderly: modification of immune responses with nutritional treatments. The American journal of clinical nutrition, 66(2), 478S-484S. doi: 10.1093/ajcn/66.2.478S.
- Levine, W. C., Smart, J. F., Archer, D. L., Bean, N. H., & Tauxe, R. V. (1991). Foodborne disease outbreaks in nursing homes, 1975 through 1987. Jama, 266(15), 2105-2109.
- Li, J., Zhu, Y., Wu, X., & Hoffmann, M. R. (2020). Rapid detection methods for bacterial pathogens in ambient waters at the point of sample collection: a brief review. Clinical Infectious Diseases, 71(Supplement_2), S84-S90.
- Lin, L., Zheng, Q., Lin, J., Yuk, H. G., & Guo, L. (2020). Immuno-and nucleic acid-based current technique for Salmonella detection in food. European Food Research and Technology, 246, 373-395.
- Liu, L., Wang, Y., Narain, R., & Liu, Y. (2019). Functionalized polystyrene microspheres as Cryptosporidium surrogates. Colloids and Surfaces B: Biointerfaces, 175, 680-687. doi: 10.1016/j.colsurfb.2018.12.046.
- Liu, R., Zhang, Y., Ali, S., Haruna, S. A., He, P., Li, H., ... & Chen, Q. (2021). Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control, 122, 107808.
- Magallanes Medina, H. (2019). Análisis de datos experimentales de un sistema de medición para la aplicación en biosensores construidos con QCM. [Tesis de pregrado, Universidad Autónoma de Baja California]
- https://repositorioinstitucional.uabc.mx/server/api/core/bitstreams/dc0b9d8a-219e-4a36-81a7-f7fed7824a68/content
- Magallanes Medina, H. (2019). Análisis de datos experimentales de un sistema de medición para la aplicación en biosensores construidos con QCM. [Tesis de pregrado, Universidad Autónoma de Baja California].
- https://repositorioinstitucional.uabc.mx/server/api/core/bitstreams/dc0b9d8a-219e-4a36-81a7-f7fed7824a68/content.
- Maldonado, M., Hampe, C. S., Gaur, L. K., D’Amico, S., Iyer, D., Hammerle, L. P., ... & Balasubramanyam, A. (2003). Ketosis-prone diabetes: dissection of a heterogeneous syndrome using an immunogenetic and β-cell functional classification, prospective analysis, and clinical outcomes. The Journal of Clinical Endocrinology & Metabolism, 88(11), 5090-5098.
- Malvano, F., Pilloton, R., & Albanese, D. (2020). A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food chemistry, 325, 126868.
- Martínez Silva, V. F. (2012). Diseño y Caracterización de un Biosensor en Modo de Resonancia para la Detección de Microorganismos Patógenos. [Tesis de maestría, Instituto Politécnico Nacional]. http://tesis.ipn.mx/bitstream/handle/123456789/16115/XM 12.28.pdf?sequence=1&isAllowed=y.
- Martínez Tomé, M. J. (2022). Biosensores. [Diapositivas de Power Point]. Universidad Miguel Hernández. https://biotecnologia.umh.es/files/2017/06/Biosensores_2022.pdf.
- Masdor, N. A., Altintas, Z., Shukor, M. Y., & Tothill, I. E. (2019). Subtractive inhibition assay for the detection of Campylobacter jejuni in chicken samples using surface plasmon resonance. Scientific reports, 9(1), 13642.
- Maunula, L., Rönnqvist, M., Åberg, R., Lunden, J., & Nevas, M. (2017). The presence of norovirus and adenovirus on environmental surfaces in relation to the hygienic level in food service operations associated with a suspected gastroenteritis outbreak. Food and environmental virology, 9, 334-341.
- Mendoza-Madrigal, A. G., Chanona-Perez, J. J., Hernández-Sánchez, H., Palacios-González, E., Calderon-Dominguez, G., Mendez-Mendez, J. V., ... & Villa-Vargas, L. A. (2013). Biosensores mecánicos en el área biológica y alimentaria: Una revisión. Revista mexicana de ingeniería química, 12(2), 205-225.
- Meyers, L., Bard, J. D., Galvin, B., Nawrocki, J., Niesters, H. G., Stellrecht, K. A., ... & Selvarangan, R. (2020). Enterovirus D68 outbreak detection through a syndromic disease epidemiology network. Journal of Clinical Virology, 124, 104262.
- Montoya Gómez, J. F., & Salinas Builes, J. D. (2017). Sistema para la compensación de temperatura en biosensores piezoeléctricos. [Tesis de pregrado, Universidad EIA]. https://repository.eia.edu.co/server/api/core/bitstreams/58af1d77-272c-4f9f-9a11-21037ed4a62a/content?authentication-
- token=eyJhbGciOiJIUzI1NiJ9.eyJlaWQiOiI0YjVkNDhjNC0wYTJkLTQyYTMtOWFmNy04OTQxYWU0NTM2ZGMiLCJzZyI6WyI0OTM1MzA5MC01ZTU1LTRkZWQtODdjNS05OThiOGE5YmNjMmMiXSwiZXhwIjoxNzE4MjEwMjQ5fQ.V4pHanZXoCvM_rzB6gjka076V83w3nkev4Ho1eMCFCk
- National Diabetes Data Group (US), National Institute of Diabetes, Digestive, & Kidney Diseases (US). (1995). Diabetes in America (No. 95). National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.
- Nivia Vargas, A. M., Iván Jaramillo, J. (2018). La industria de sensores en Colombia. Tecnura, 22(57), 44-54. doi: 10.14483/22487638.13518
- Nnachi, R. C., Sui, N., Ke, B., Luo, Z., Bhalla, N., He, D., & Yang, Z. (2022). Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environment international, 166, 107357. doi: 10.1016/j.envint.2022.107357.
- Olivo-Gutiérrez, M., Verduzco-Ramírez, J., García-Díaz, N., Villalobos-Gómez, J., & Olivo-Gutiérrez, A. (2018). Prototipo para el monitoreo automatizado de parámetros de calidad del agua en una granja de camarón. Científica, 22(2), 87-95.
- Oravczová, V., Tatarko, M., Süle, J., Hun, M., Kerényi, Z., Hucker, A., & Hianik, T. (2020, November). Detection of Listeria innocua by acoustic aptasensor. In Proceedings (Vol. 60, No. 1, p. 18). MDPI. doi: 10.3390/iecb2020-07079.
- Organización de las Naciones Unidas (2019). Convención sobre los derechos de las personas con discapacidad. https://www.un.org/esa/socdev/enable/documents/tccconvs.pdf
- Ortega, J. (2021). Detección de Salmonella typhimurium mediante un inmunosensor basado en microbalanzas de cristal de cuarzo (QCM) inmovilizado con nanopartículas de oro funcionalizadas. [Disertación doctoral, Instituto Tecnológico y de Estudios Superiores de Monterrey]. https://repositorio.tec.mx/handle/11285/646627.
- Ortiz Támara, D. (2016). Sistema para la compensación de temperatura en biosensores piezoeléctricos (estudio de simulación). [Tesis de pregrado, Universidad EIA]. https://repository.eia.edu.co/handle/11190/2011.
- Pang, Y., Wan, N., Shi, L., Wang, C., Sun, Z., Xiao, R., & Wang, S. (2019). Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@ Au. Analytica Chimica Acta, 1077, 288-296.
- Pauca Revilla, Y. A., & Torres Quispe, R. P. (2022). Determinación de la calidad del agua para consumo humano en el distrito de Urasqui, anexo de Secocha-Camaná 2022. Tesis de pregrado, Universidad Privada Autónoma de Ica.
- Pirinçci, Ş. Ş., Ertekin, Ö., Laguna, D. E., Özen, F. Ş., Öztürk, Z. Z., & Öztürk, S. (2018). Label-free QCM immunosensor for the detection of ochratoxin A. Sensors, 18(4), 1161. doi: 10.3390/s18041161.
- Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage (Vol. 519, p. 388). New York: Springer.
- Poturnayova, A., Szabo, K., Tatarko, M., Hucker, A., Kocsis, R., & Hianik, T. (2021). Determination of plasmin in milk using QCM and ELISA methods. Food Control, 123, 107774. doi: 10.1016/j.foodcont.2020.107774.
- Prasad, A. S., Fitzgerald, J. T., Hess, J. W., Kaplan, J., Pelen, F., & Dardenne, M. (1993). Zinc deficiency in elderly patients. Nutrition (Burbank, Los Angeles County, Calif.), 9(3), 218-224.
- Prevots, D. R., & Sutter, R. W. (1997). Assessment of Guillain-Barré syndrome mortality and morbidity in the United States: implications for acute flaccid paralysis surveillance. The Journal of infectious diseases, 175(Supplement_1), S151-S155.
- Priyanka, B., Patil, R. K., & Dwarakanath, S. (2016). A review on detection methods used for foodborne pathogens. Indian Journal of Medical Research, 144(3), 327-338.
- Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 1, 100040
- Purpari, G., Macaluso, G., Di Bella, S., Gucciardi, F., Mira, F., Di Marco, P., ... & Guercio, A. (2019). Molecular characterization of human enteric viruses in food, water samples, and surface swabs in Sicily. International Journal of Infectious Diseases, 80, 66-72.
- Quintanilla-Villanueva, G. E., Maldonado, J., Luna-Moreno, D., Rodríguez-Delgado, J. M., Villarreal-Chiu, J. F., & Rodríguez-Delgado, M. M. (2023). Progress in plasmonic sensors as monitoring tools for aquaculture quality control. Biosensors, 13(1), 90. doi: 10.3390/bios13010090.
- Raghu, H. V., & Kumar, N. (2020). Rapid detection of Listeria monocytogenes in milk by surface plasmon resonance using wheat germ agglutinin. Food Analytical Methods, 13, 982-991.
- Ramakrishnan, B., Maddela, N. R., Venkateswarlu, K., & Megharaj, M. (2021). Organic farming: Does it contribute to contaminant-free produce and ensure food safety? Science of The Total Environment, 769, 145079.
- Ramírez, C. A. S. (2021). Calidad del agua: evaluación y diagnóstico. Ediciones de la U.
- Raykova, R., A Marinkova, D., A Semerdzhieva, V., Michiel, M., Griesmar, P., Mourdjeva, M., ... & T Iliev, I. (2019). Quartz Crystal Microbalance Detection of Aflatoxin B1 by Self-Assembled Monolayer Technique. The Open Biotechnology Journal, 13(1). doi: 10.2174/187407070190130122.
- Reta, N., Saint, C. P., Michelmore, A., Prieto-Simon, B., & Voelcker, N. H. (2018). Nanostructured electrochemical biosensors for label-free detection of water-and food-borne pathogens. ACS applied materials & interfaces, 10(7), 6055-6072. doi: 10.1021/acsami.7b13943.
- Reta, N., Saint, C. P., Michelmore, A., Prieto-Simon, B., & Voelcker, N. H. (2018). Nanostructured
- Reyna O. (2021). Monitoreo de la calidad del agua en la ciudad de Pucallpa. [Tesis de pregrado, universidad Nacional Francisco Villarreal]. https://repositorio.unfv.edu.pe/bitstream/handle/20.500.13084/5166/UNFV_Reyna_Garrido_Oscar_Alejandro_Titulo_Profesional_2021.pdf?sequence=1
- Ríos-Tobón, S., Agudelo-Cadavid, R. M., & Gutiérrez-Builes, L. A. (2017). Pathogens and microbiological indicators of the quality of water for human consumption. Revista Facultad Nacional de Salud Pública, 35(2), 236-247. doi: 10.17533/udea.rfnsp.v35n2a08.
- Ripa, R., Shen, A. Q., & Funari, R. (2020). Detecting Escherichia coli biofilm development stages on gold and titanium by quartz crystal microbalance. ACS omega, 5(5), 2295-2302. doi: 10.1021/acsomega.9b03540.
- Rispens, J. R. (2020). Notes from the field: multiple cruise ship outbreaks of norovirus associated with frozen fruits and berries—United States, 2019. MMWR. Morbidity and Mortality Weekly Report, 69.
- Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., Nascimento, M. S. J., ... & Van der Poel, W. H. (2012). Virus hazards from food, water and other contaminated environments. FEMS microbiology reviews, 36(4), 786-814.
- Saad, N. A., Zaaba, S. K., Zakaria, A., Kamarudin, L. M., Wan, K., & Shariman, A. B. (2014, August). Quartz crystal microbalance for bacteria application review. In 2014 2nd International Conference on Electronic Design (ICED) (pp. 455-460). IEEE.
- Samuel, M. C., Vugia, D. J., Shallow, S., Marcus, R., Segler, S., McGivern, T., ... & Emerging Infections Program FoodNet Working Group. (2004). Epidemiology of sporadic Campylobacter infection in the United States and declining trend in incidence, FoodNet 1996–1999. Clinical Infectious Diseases, 38(Supplement_3), S165-S174.
- Sánchez, A. A., Guerrero, E. G., & Barreto, L. E. (2019). Modelo informático integrado AmI-IoT-DA para el cuidado de personas mayores que viven solas. Revista Colombiana de Computación, 20(1), 59-71. http://dx.doi.org/10.29375/25392115.3607
- Saravanan, A., Kumar, P. S., Hemavathy, R. V., Jeevanantham, S., Kamalesh, R., Sneha, S., & Yaashikaa, P. R. (2021). Methods of detection of food-borne pathogens: a review. Environmental Chemistry Letters, 19, 189-207.
- Semenza, J. C., Herbst, S., Rechenburg, A., Suk, J. E., Höser, C., Schreiber, C., & Kistemann, T. (2012). Climate change impact assessment of food-and waterborne diseases. Critical reviews in environmental science and technology, 42(8), 857-890. https://doi.org/10.1080/10643389.2010.534706.
- Shi, F., Gan, L., Wang, Y., & Wang, P. (2020). Impedimetric biosensor fabricated with affinity peptides for sensitive detection of Escherichia coli O157: H7. Biotechnology letters, 42, 825-832.
- Shimoni, Z., Pitlik, S., Leibovici, L., Samra, Z., Konigsberger, H., Drucker, M., ... & Weinberger, M. (1999). Nontyphoid Salmonella bacteremia: age-related differences in clinical presentation, bacteriology, and outcome. Clinical infectious diseases, 28(4), 822-827.
- Shwaiki, L. N., Arendt, E. K., Lynch, K. M., & Thery, T. L. (2019). Inhibitory effect of four novel synthetic peptides on food spoilage yeasts. International journal of food microbiology, 300, 43-52.
- Silva, N. F., Magalhães, J. M., Barroso, M. F., Oliva-Teles, T., Freire, C., & Delerue-Matos, C. (2019). In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. Talanta, 194, 134-142.
- Silva, N. F., Neves, M. M., Magalhães, J. M., Freire, C., & Delerue-Matos, C. (2020). Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends in food science & technology, 99, 621-633.
- Singh, R. P., & Anderson, B. A. (2004). The major types of food spoilage: an overview. Understanding and measuring the shelf-life of food, 3-23.
- Sosa Ramos, O. (2018). Estudio de los Efectos de humedad en la respuesta de los sensores de gas a base de resonador de cuarzo. [Tesis de pregrado, Benemérita Universidad Autónoma de Puebla]. https://repositorioinstitucional.buap.mx/server/api/core/bitstreams/f1e2887a-1304-4264-bbdf-aa2ecf26bc95/content.
- Spagnolo, S., Muckley, E. S., Ivanov, I. N., & Hianik, T. (2022). Application of multiharmonic QCM-D for detection of plasmin at hydrophobic surfaces modified by β-casein. Chemosensors, 10(4), 143. doi: 10.3390/chemosensors10040143.
- Su, X., Sutarlie, L., & Loh, X. J. (2020). Sensors, biosensors, and analytical technologies for aquaculture water quality. Research 2020. doi: 10.34133/2020/8272705.
- Suvanasuthi, R., Cheewasatheinchaiyaporn, T., Wat-Aksorn, K., & Promptmas, C. (2023). Nucleic Acid Amplification Free-QCM-DNA Biosensor for Burkholderia pseudomallei Detection. Current Microbiology, 80(12), 376. doi: https://doi.org/10.1007/s00284-023-03490-y.
- Taneja, P., Manjuladevi, V., Gupta, K. K., & Gupta, R. K. (2018). Detection of cadmium ion in aqueous medium by simultaneous measurement of piezoelectric and electrochemical responses. Sensors and Actuators B: Chemical, 268, 144-149. doi: 10.1016/j.snb.2018.04.091.
- Tao, J., Liu, W., Ding, W., Han, R., Shen, Q., Xia, Y., ... & Sun, W. (2020). A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens. Journal of food science, 85(3), 744-754
- Timme, R. E., Sanchez Leon, M., & Allard, M. W. (2019). Utilizing the public GenomeTrakr database for foodborne pathogen traceback. Foodborne bacterial pathogens: methods and protocols, 201-212.
- Torres Mena, O. I. (2020). Generación de un biosensor óptico basado en silicio cristalino para la determinación de Ospina 5 en modelo murino. [Tesis de maestría, Benemérita Universidad Autónoma de Puebla].
- https://repositorioinstitucional.buap.mx/server/api/core/bitstreams/1275ba10-09e0-4f7a-837a-ca46a86f858d/content
- Trevejo, R. T., Courtney, J. G., Starr, M., & Vugia, D. J. (2003). Epidemiology of salmonellosis in California, 1990–1999: morbidity, mortality, and hospitalization costs. American Journal of Epidemiology, 157(1), 48-57.
- Umpierrez, G. E., & Kitabchi, A. E. (2003). Diabetic ketoacidosis: risk factors and management strategies. Treatments in endocrinology, 2, 95-108. https://doi.org/10.2165/00024677-200302020-00003
- United Nations. (2019). World population prospects 2019. Vol (ST/ESA/SE. A/424) Department of Economic and Social Affairs: Population Division.
- Vanegas, D. C., Gomes, C. L., Cavallaro, N. D., Giraldo‐Escobar, D., & McLamore, E. S. (2017). Emerging biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1188-1205. doi: 10.1111/1541-4337.12294.
- Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., & Adley, C. (2010). An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology advances, 28(2), 232-254.
- Villena Chavez, J. (2018). Water quality and sustainable development. Revista Peruana de Medicina Experimental y Salud Publica, 35(2), 304-308. doi: 10.17843/rpmesp.2018.352.3719.
- Vizzini, P., Manzano, M., Farre, C., Meylheuc, T., Chaix, C., Ramarao, N., & Vidic, J. (2021). Highly sensitive detection of Campylobacter spp. In chicken meat using a silica nanoparticle enhanced dot blot DNA biosensor. Biosensors and Bioelectronics, 171, 112689
- Voetsch, A. C., Vugia, D. J., Klontz, K. C., Megginson, M., Scheftel, J., Ingram, A., ... & Thomas, S. (2005). Trends in sporadic Vibrio infections in foodborne diseases active surveillance network (FoodNet) sites, 1996–2002. In Conference on Emerging Infectious Diseases, Atlanta, GA.
- Vugia, D. J., Samuel, M., Farley, M. M., Marcus, R., Shiferaw, B., Shallow, S., ... & Emerging Infections Program FoodNet Working Group. (2004). Invasive Salmonella infections in the United States, FoodNet, 1996–1999: incidence, serotype distribution, and outcome. Clinical infectious diseases, 38(Supplement_3), S149-S156.
- Wang, H., Wang, L., Hu, Q., Wang, R., Li, Y., & Kidd, M. (2018). Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. Journal of food protection, 81(8), 1321-1330.
- Wang, H., Wang, L., Hu, Q., Wang, R., Li, Y., & Kidd, M. (2018). Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. Journal of food protection, 81(8), 1321-1330. doi: 10.4315/0362-028X.JFP-17-381.
- Wang, M., Yang, J., Gai, Z., Huo, S., Zhu, J., Li, J., ... & Zhang, L. (2018). Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk. International journal of food microbiology, 266, 251-256.
- Weber, W. (1979). Control de la calidad del Agua/Water Quality control: Procesos fisicoquímicos. Reverté.
- Widdowson, M. A., Sulka, A., Bulens, S. N., Beard, R. S., Chaves, S. S., Hammond, R., ... & Glass, R. I. (2005). Norovirus and foodborne
- disease, United States, 1991–2000. Emerging infectious diseases, 11(1), 95.
- Willems, K. et al. (2008), Detection and identification of fish pathogens: What is the future? The Israeli Journal of Aquaculture – Bamidgeh 60(4), 213-229.
- World Health Organization. (2015). WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. World Health Organization.
- Xu, Z., & Yuan, Y. J. (2019). Quantification of Staphylococcus aureus using surface acoustic wave sensors. RSC advances, 9(15), 8411-8414. doi: 10.1039/c8ra09790a.
- Yang, E., Li, D., Yin, P., Xie, Q., Li, Y., Lin, Q., & Duan, Y. (2021). A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker. Biosensors and Bioelectronics, 172, 112758.
- Yang, T., Wang, Z., Song, Y., Yang, X., Chen, S., Fu, S., ... & Jiang, Y. (2021). A novel smartphone-based colorimetric aptasensor for on-site detection of Escherichia coli O157: H7 in milk. Journal of Dairy Science, 104(8), 8506-8516.
- Yang, Y., Wu, T., Xu, L. P., & Zhang, X. (2021). Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy. Talanta, 226, 122132.
- Yu, H., Shu, J., & Li, Z. (2020). Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Review of Proteomics, 17(1), 27-39.
- Yu, J. M., Li, L. L., Zhang, C. Y., Lu, S., Ao, Y. Y., Gao, H. C., ... & Duan, Z. J. (2016). A novel hepatovirus identified in wild woodchuck Marmota himalayana. Scientific reports, 6(1), 22361.
- Yu, T., Xu, H., Zhao, Y., Han, Y., Zhang, Y., Zhang, J., ... & Ge, J. (2020). Aptamer based high throughput colorimetric biosensor for detection of staphylococcus aureus. Scientific reports, 10(1), 1-6.
- Yu, X., Chen, F., Wang, R., & Li, Y. (2018). Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. Journal of biotechnology, 266, 39-49.
- Zalazar, M. (2019). Desarrollo de biosensor piezoelectrico para diagnóstico de enfermedades. Ciencia, Docencia y Tecnología Suplemento, 9(9).
- Zeinhom, M. M. A., Wang, Y., Song, Y., Zhu, M. J., Lin, Y., & Du, D. (2018). A portable smart-phone device for rapid and sensitive detection of E. coli O157: H7 in Yoghurt and Egg. Biosensors and Bioelectronics, 99, 479-485.
- Zhang, R., Belwal, T., Li, L., Lin, X., Xu, Y., & Luo, Z. (2020). Nanomaterial‐based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1465-1487.
- Zhou, Z., Zhang, Y., Guo, M., Huang, K., & Xu, W. (2020). Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157: H7. Biosensors and Bioelectronics, 167, 112475.