Vol. 15 No. 1 (2024): AGLALA JOURNAL
Papers

Antimicrobial peptides as a replacement in the administration of antibiotics in the elderly

Nathaly Marín Medina
Universidad Distrital Francisco José de Caldas
Roberto Ferro Escobar
Universidad Distrital Francisco José de Caldas
Orlando García
Universidad Distrital Francisco José de Caldas

Published 2024-10-14

Keywords

  • Antimicrobial peptides,
  • elderly population,
  • infections,
  • antibiotic alternatives

How to Cite

Marín Medina, N., Ferro Escobar, R., & García, O. (2024). Antimicrobial peptides as a replacement in the administration of antibiotics in the elderly. Aglala, 15(1), 326–340. Retrieved from https://revistas.uninunez.edu.co/index.php/aglala/article/view/2509

Abstract

The aging population has raised concerns about vulnerability to diseases and infections in older adults, leading to increased dependency on antibiotics. However, antibiotics resistance and associated side effects represent challenges. To address this issue, a review of recent studies on the use of antimicrobial peptides in the elderly is conducted. The methodology involves an exhaustive search in academic databases, selection of relevant studies, critical assessment regarding quality and bias, and extraction of key data. The results of this review show that, in a third-level hospital in Bogotá, 13.8% of prescriptions included at least one antibiotic, with the most prescribed being cephalexin, ciprofloxacin, and amoxicillin. Additionally, it was observed that most prescriptions lacked detailed information about the route of administration and treatment duration. The implications of this study are broad. Antimicrobial peptides offer applications in medicine, dermatology, dentistry, food industry, and agriculture due to their ability to combat a variety of microorganisms. Despite facing logistical challenges, these peptides emerge as a promising alternative to traditional antibiotics, possessing a broad spectrum of action and effective mechanisms against different pathogens. However, further research is needed to fully understand their efficacy and safety in the elderly, and addressing logistical challenges such as production costs and susceptibility to degradation is essential.

Downloads

Download data is not yet available.

References

  1. Brunetti, A. E., Fuzo, C. A., Aguilar, S., Rivera-Correa, M., Marani, M. M., & Lopes, N. P. (2023). The Significance of Hypervariability and Conserved Motifs in Antimicrobial Peptides from Tree Frogs. Journal of Natural Products, 86(7), 1761–1769. https://doi.org/10.1021/acs.jnatprod.3c00224
  2. Cardoso, M. H., Orozco, R. Q., Rezende, S. B., et al. (2019). Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Frontiers in Microbiology, 10, 3097. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.03097/full
  3. Chalé, F. H., Ancona, D. B., & Campos, M. R. S. (2014). Compuestos bioactivos de la dieta con potencial en la prevención de patologías relacionadas con sobrepeso y obesidad; péptidos biológicamente activos. Nutricion Hospitalaria 29(1), 10–20). https://doi.org/10.3305/nh.2014.29.1.6990
  4. DANE. (2006). Conciliación Censal 1985-2005 y Proyecciones de Población 2005-2020 https://www.dane.gov.co/files/investigaciones/poblacion/seriesp85_20/IndicadoresDemograficos1985-2020.xls
  5. DePalma, A. (2015). Peptides: new processes, lower costs. Genetic Engineering and Biotechnology News, 35(13): 7-8. https://www.liebertpub.com/doi/abs/10.1089/gen.35.13.12?journalCode=gen
  6. Dhole, S., Mahakalkar, C., Kshirsagar, S., & Bhargava, A. (2023). Antibiotic Prophylaxis in Surgery: Current Insights and Future Directions for Surgical Site Infection Prevention. Cureus, 15(10), e47858. https://doi.org/10.7759/cureus.47858
  7. Fernández Ruiz, D. R., Pérez Meneses, Z., Cuevas Pérez, O. L., Quirós Enríquez, M., Barrios Romero, B., & Dueñas Pérez, Y. (2021). Utilización de antibióticos en una población del municipio Cienfuegos. Medisur, 19(1), 54-62. http://medisur.sld.cu/index.php/medisur/article/view/4603
  8. Giraldo Granada, A. (2023). Ciencia, industria y de cómo la penicilina cambió el rumbo de la medicina durante la segunda guerra mundial. Historias, 7(7), 25-31. https://journalasocol.org.asocolhistoria.org/index.php/historias/article/download/89/68
  9. González García, M., San Juan Galán, J., Morales Vicente, F. E., & Otero González, A. J. (2017). Péptidos antimicrobianos: potencialidades terapéuticas. Revista Cubana de Medicina Tropical, 69(2), 01-13. http://scielo.sld.cu/scielo.php?pid=S0375-07602017000200008&script=sci_arttext
  10. Jiménez, J., Giralt, E., & Albericio, F. (2004). Péptidos y la industria farmacéutica. Anales de la Real Sociedad Española de Química, 2, 10-16. https://dialnet.unirioja.es/descarga/articulo/818822.pdf
  11. López Gutiérrez, J. J., Mena Bejarano, M., & Mora, E. (2008). Estudio de utilización de antibióticos en el servicio de consulta externa de un hospital de tercer nivel de la ciudad de Bogotá. Revista Colombiana de Ciencias Químico-Farmacéuticas, 37(2), 224-240. http://www.scielo.org.co/scielo.php?pid=S0034-74182008000200010&script=sci_arttext
  12. Mahlapuu, M., Björn, C., Ekblom, J. (2020). Antimicrobial peptides as therapeutic agents: opportunities and challenges. Critical Reviews in Biotechnology, 40(7), 978-992. https://doi.org/10.1080/07388551.2020.1796576
  13. Malmsten, M. (2016). Interactions of antimicrobial peptides with bacterial membranes and membrane components. Current Topics in Medicinal Chemistry, 16(1), 16-24. https://www.ingentaconnect.com/content/ben/ctmc/2016/00000016/00000001/art00005
  14. Mwangi, J., Hao, X., Lai, R., et al. (2019). Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research, 40(6), 488-505. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822926/
  15. Olascoaga-Del Ángel, K. S., Sánchez-Evangelista, G., Carmona-Navarrete, I., Galicia-Sánchez, M. del C., Gómez-Luna, A., Islas-Arrollo, S. J., & Castañeda-Sánchez, J. I. (2018). Péptidos antimicrobianos, una alternativa prometedora para el tratamiento de enfermedades infecciosas. Gaceta Medica de Mexico, 154(6), 681–688. https://doi.org/10.24875/GMM.18003445
  16. Rivas-Santiago, B., Sada, E., Hernández-Pando, R., & Tsutsumi, V. (2006). Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas. Salud pública de méxico, 48, 62-71. https://www.scielosp.org/pdf/spm/2006.v48n1/62-71/es
  17. Santos Cabrera, I. A. (2022). Identificación de péptidos antimicrobianos producidos por Bacillus con capacidad de inhibir el crecimiento de aislados clínicos de Staphylococcus aureus. [Tesis de Maestría, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California]. https://cicese.repositorioinstitucional.mx/jspui/handle/1007/3823
  18. Sarrión Sos, I., & Castellano Estornell, G. M. (2019). Descubrimiento de la penicilina. Alexander Fleming. Universidad Católica de Valencia. https://riucv.ucv.es/bitstream/handle/20.500.12466/275/IMP_07.UCV_RevCiencia_Alexander.pdf?sequence=1&isAllowed=y
  19. Sierra, J. M., Fuste, E., Rabanal, F., et al. (2017). An overview of antimicrobial peptides and the latest advances in their development. Expert Opinion on Biological Therapy, 17(6), 663-676. https://www.tandfonline.com/doi/abs/10.1080/14712598.2017.1315402
  20. WHO. (2014). WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health. WHO South-East Asia. https://www.who.int/southeastasia/news/detail/30-04-2014-who-s-first-global-report-on-antibiotic-resistance-reveals-serious-worldwide-threat-to-public-health
  21. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389-395. https://www.nature.com/articles/415389a