Vol. 15 No. 1 (2024): AGLALA JOURNAL
Papers

Artificial intelligence for optimal allocation of specialist physicians geriatrics service management

Gustavo Silva Rodríguez
Universidad Distrital Francisco José de Caldas
Alexandra Abuchar Porras
Universidad Distrital Francisco José de Caldas
Roberto Ferro Escobar
Universidad Distrital Francisco José de Caldas

Published 2024-11-13

Keywords

  • Artificial Intelligence in Medicine,
  • Neural Network,
  • Machine Learning,
  • Computer Aided Diagnosis,
  • Health Data Interoperability,
  • AI Medical Data Security and Privacy
  • ...More
    Less

How to Cite

Silva Rodríguez, G., Abuchar Porras, A., & Ferro Escobar, R. (2024). Artificial intelligence for optimal allocation of specialist physicians geriatrics service management. Aglala, 15(1), 311–325. Retrieved from https://revistas.uninunez.edu.co/index.php/aglala/article/view/2507

Abstract

 Recepción: 20 de Noviembre de 2023  / Evaluación: 05  de Febrero de 2024 / Aprobado: 12 de Abril de 2024

This paper focuses on an implementation for the assignment of specialized medical personnel for the geriatric service, which is administratively carried out manually, according to a model of a Neural Network that incorporates the epidemiological behavior of the demand, the availability of the installed capacity, available schedules of the professionals, types of links, geographic locations where care is provided. The methodology used covers the process of collecting medical data, which are subjected to machine learning algorithms, which allow clinical validation and comparative evaluation with conventional standards. The methodological approach used shows that the data acquisition and processing strategies, the experimental design and the evaluation techniques guarantee a plausible precision, reliability and applicability of the AI models, for the branch and bound algorithm, in the medical context of the administration of the Geriatric service.

Downloads

Download data is not yet available.

References

  1. Ali Hassan Sodhro, Mohammad S. Obaidat, Sandeep Pirbhulal, & Gul Hassan Sodhro. (2019). A Novel Energy Optimization Approach for Artificial Intelligence-enabled Massive Internet of Things. IEEE Xplore.
  2. Alireza Nooraiepour, Waheed U. Bajwa, & Narayan B. Mandayam. (2021). A hybrid model-based and learning-based approach for classification using limited number of training samples.
  3. Atefeh Amindoust, Milad Asadpour, & Samineh Shirmohammadi. (2021). A Hybrid Genetic Algorithm for Nurse Scheduling Problem considering the Fatigue Factor. NIH National Library of Medicine.
  4. Chen, C., Fu, H., Zheng, Y., Tao, F., & Liu, Y. (2023). The advance of digital twin for predictive maintenance: The role and function of machine learning. In Journal of Manufacturing Systems (Vol. 71, pp. 581–594). Elsevier B.V. https://doi.org/10.1016/j.jmsy.2023.10.010
  5. Cobo Ortega, Á. (n.d.). UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Centro Asociado de Cantabria Lección Inaugural del Curso 2000-2001 ÁNGEL COBO ORTEGA Profesor Tutor.
  6. Deng, J., Sierla, S., Sun, J., & Vyatkin, V. (2023). Mass customization with reinforcement learning: Automatic reconfiguration of a production line. Applied Soft Computing, 145. https://doi.org/10.1016/j.asoc.2023.110547
  7. Eduardo Francisco Caicedo, & Jesús Alfonso López. (2009). UNA APROXIMACIÓN PRÁCTICA A LAS REDES NEURONALES ARTIFICIALES.
  8. Fatih Yiğit. (2023). A novel type-2 hexagonal fuzzy logic approach for predictive safety stock management for a distribution business.
  9. Fernando Filgueiras. (2021). Inteligencia Artificial en la administración pública: ambigüedad y elección de sistemas de IA y desafíos de gobernanza digital.
  10. Jackeline Granados Ferreira. (2022). Análisis de la inteligencia artificial en las relaciones laborales.
  11. Jacques Ferber. (1999). Multi-Agent System: An Introduction to Distributed Artificial Intelligence.
  12. Jagatheesaperumal, S. K., Rahouti, M., Ahmad, K., Al-Fuqaha, A., & Guizani, M. (2021). The Duo of Artificial Intelligence and Big Data for Industry 4.0: Review of Applications, Techniques, Challenges, and Future Research Directions. http://arxiv.org/abs/2104.02425
  13. John Fulcher. (2006). Advances in applied artificial intelligence / .
  14. Lenin, F., Satama, V., Andrés, G., & Terán, F. (2023). Enero-Junio 2023. In Revista ComHumanitas (Vol. 14, Issue 1). https://orcid.org/0000-
  15. Max Bramer. (2009). Artificial Intelligence. An International Perspective.
  16. Nelly Flores. (2023). El Impacto de la Inteligencia Artificial en la Actualidad.
  17. Raúl Pino Díez, Alberto Gómez Gómez, & Nicolás de Abajo Martínez. (2001). Introducción a la inteligencia artificial.
  18. Robert Ojstersek, Miran Brezocnik, & Borut Buchmeister. (2020). Multi-objective optimization of production scheduling with evolutionary computation: A review. ResearchGate.
  19. Russell, S. J. (Stuart J., Norvig, Peter., Corchado Rodríguez, J. Manuel., & Joyanes Aguilar, Luis. (2004). Inteligencia artificial : un enfoque moderno. Pearson Prentice Hall.
  20. Sardar Mehboob Hussain, Antonio Brunetti, Giuseppe Lucarelli, & Ricardo Memeo. (2022). Deep Learning Based Image Processing for Robot Assisted Surgery: A Systematic Literature Survey. IEEE Xplore.
  21. Sidorov Gerhard Ritter Jean Serra Ulises Cortés, G. (n.d.). Research in Computing Science Series Editorial Board Comité Editorial de la Serie Editors-in-Chief: Editores en Jefe. http://www.cic.ipn.mx
  22. Wang, T. (2022). A Novel Approach of Integrating Natural Language Processing Techniques with Fuzzy TOPSIS for Product Evaluation. Symmetry, 14(1). https://doi.org/10.3390/sym14010120
  23. Zhang, L. (2023). A Novel Framework for Future Natural Language Processing From a Database Perspective. https://doi.org/10.13140/RG.2.2.33740.80001