Importancia de la evaluación de lactobacillus plantarum atcc 8041® microencápsulado para el sector agroindustrial
Publicado 2023-12-15
Palabras clave
- ETA, BAL, Lactobacillus plantarum, Prebióticos, Probióticos, Campilobacter jejuni.
Cómo citar
Resumen
Se evaluó el efecto inhibidor de Lactobacillus plantarum microencapsulado y su viabilidad en condiciones gastrointestinales simuladas. Se realizó reconstitución, siembra y ajuste del inóculo; antibiograma; cinética de fermentación; determinación de péptidos, aminoácidos y ácido láctico en el sobrenadante; resistencia a temperaturas de 37 y 45°C; micro-encapsulación; estudio a condiciones gastrointestinales simuladas del microencapsulado después de 90 días de almacenamiento; y producción de exopolisacáridos (EPS). Los resultados indican acción inhibitoria de la cepa L. plantarum frente a la bacteria patógena; fase exponencial a las 15 horas (medio de cultivo MRS) y a las 18 horas (medio de cultivo PRO), con los parámetros cinéticos en la fase exponencial de la siguiente manera: producción de proteína 2,43mg/L (MRS) y 4,86mg/L (PRO); consumo de azúcares 4,96 mg/L (MRS) y 7,68mg/L (PRO); porcentaje de acidez 1,32% (MRS) y 1,75% (PRO); pH 4,07 (MRS) y 3,86 (PRO); resultados del estudio y análisis del microencapsulado: viabilidad 100%; eficiencia 84,64%; humedad 4,0%; solubilidad 99,8%; humectabilidad 2 min con 22 segundos; actividad de agua 0,617 y tamaño de partícula entre 2,10µm y 5,28µm. Se concluyó que L. plantarum microencapsulado presentó propiedades inhibitorias frente a la cepa patógena y tiene adherencia in vitro.
Descargas
Citas
- Acosta Nieves, I., Roenes, G. (2019). Staphylococcus aureus procedentes de quesos costeños de Valledupar; susceptibilidad a antibióticos y perfil plasmídico. Rev Méd Risaralda 25(1):10–4. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-06672019000100010
- Alizadeh Behbahani, B., Noshad, M., Falah, F. (2019). Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microb Pathog 136(3): 123-134. Available from: https://doi.org/10.1016/j.micpath.2019.103677
- Andrade, J., Alexandre, M., Da Silva, C., De Sousa Campos, R., Aires do Nascimento, FBS., Serpa Sampaio. (2019). A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb Pathog 127(November 2018):335–40. Available from: https://doi.org/10.1016/j.micpath.2018.11.056
- Bauer, A., Kirby, W., Sherris, C., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 45(4):493–6.
- Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc.14(4): 991–1014. Available from: https://www.nature.com/articles/s41596-018-0119-1
- Cai Y, Puangpen S, Premsuda S, Benno Y. (1999). Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. J Gen Appl Microbiol 45(4):177–84. Available from: https://pubmed.ncbi.nlm.nih.gov/12501375/
- Ceron-Cordoba JF, Jurado-Gámez H, Bolaños-Bolaños JC. (2021). Aplicación de un probiótico (lactobacillus reuteri atcc 53608) microencapsulado en una bebida tipo sorbete a base de pulpa de fruta (banano y mango) como alimento funcional y su aplicación en la industria alimentaria. AGLALA. 12(2):249–63.
- Chen L, Song Z, Tan SY, Zhang H, Yuk H-G. (2020). Application of Bacteriocins Produced from Lactic Acid Bacteria for Microbiological Food Safety. Curr Top Lact Acid Bact Probiotics 6(1):1–8. Available from: http://www.elabp.org/archive/view_article?pid=labp-6-1-1
- Chen, W. (2019). LacticAcid Bacteria and Fermented Meat Products. Lactic Acid Bacteria Bioengieering and Industrial Applications. Singapore: Springer; 211–226 p.
- Cramer A, Rogers E, Parker J, Lukes R. (1972). The use of Giemsa stain for tissue sections. Med Bull. 59(6):148–56.
- Cruz Pacheco K, Madrigal Mendoza GA, Valencia G, Páramo Durán E. (2009). Viabilidad de Lactobacillus delbrueckii libre e inmovilizado bajo condiciones gastrointestinales simuladas in vitro. Lactobacillus 4(2)1–22.
- Cruz Ramos R. (2015). Estudio de la supervivencia de bacterias probióticas microencapsuladas bajo condiciones gastrointestinales simuladas en un sistema dinámico. Instituto Tecnológico de Tuxtla Gutiérrez. Available from:
- http://repositorio.digital.tuxtla.tecnm.mx:8080//xmlui/handle/123456789/1004
- Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. (2010). Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem, 28(3):350–6. Available from: https://pubs.acs.org/doi/abs/10.1021/ac60111a017
- El-Enshasy, H., Yang, S. (2021). Probiotics, the Natural Microbiota in Living Organisms. 1st ed. Probiotics, the Natural Microbiota in Living Organisms. CRC Press.
- Erginkaya Z, Turhan EU, Tatli D. (2018). Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iran J Vet Res. 19(1):56. Available from: /pmc/articles/PMC5960774/
- Fajardo-Argoti C, Jurado-Gámez H, Parra-Suescún J. (2021). Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 Viability of microencapsulated Lactobacillus plantarum under simulated
- gastrointestinal conditions and inhibit. Rev UDCA Actual Divulg Científica 24 (1): 1-12. Available from: http://doi.org/10.31910/rudca.v24.n1.2021.1733
- Fang Wu Wu JW. (2020). Caracterización de bacterias ácido lácticas (bal) aisladas de ensilados de piña como microorganismos con potencial probiótico y determinación de su aplicabilidad como cultivo bioprotector en leche agria. Ciudad Unversitaria Rodrigo Facio, Costa Rica;
- Flores Tixicuro JM. (2020). Optimización estadística de la producción de ácido láctico a partir de lactosuero por Lactobacillus casei . Universidad Técnica del]. Available from: http://repositorio.utn.edu.ec/handle/123456789/11169
- Flórez AB, Mayo B. (2017). Antibiotic resistance-susceptibility profiles of Streptococcus thermophilus isolated from raw milk and genome analysis of the genetic basis of acquired resistances. Front Microbiol. 22(8):1–12.
- Fonseca, H., De Sousa, D., Ramos, C., Dias, D., Schwan, R. (2021). Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells. Probiotics Antimicrob Proteins. 13(1):102–12.
- Gao L, Zhu H, Chen Y, Yang Y. (2021). Antibacterial pathway of cefquinome against Staphylococcus aureus based on label-free quantitative proteomics analysis. J Microbiol 59(12):1112–24. Available from: https://link.springer.com/article/10.1007/s12275-021-1201-x
- González BA, Domínguez-Espinosa R, Alcocer BR. (2007). Use of Aloe vera juice as substrate for growth of Lactobacillus plantarum and L. casei. Cienc y Tecnol Aliment. 6(2):152–7. Available from: www.somenta.org/journal
- González, E., Gómez-Caravaca, A., Giménez, B., Cebrián, R., Maqueda, M., Parada, J. (2020). Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem. Apr 25;310:125976.
- Guimarães DP, Costa FAA, Rodrigues MI, Maugeri F. (1999). Optimization of dextran syntesis and acidic hydrolisis by surface response analysis. Journal of Animal, 16(2):129–39.
- Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B. (2017). Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. J Food Sci 82(3):724–30. Available from: https://pubmed.ncbi.nlm.nih.gov/28182844/
- Gúzman-Insuasty M, Jarrín-Jarrín V, Jurado-Gámez H. (2015). Determinación De La Cinética, Pruebas De Crecimiento Microbiano y Efecto de Inhibición In Vitro de Lactobacillus lactis en Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae y Escherichia coli. Rev la Fac Med Vet y Zootec, 62(2):40–56. Available from: http://www.revistas.unal.edu.co/index.php/remevez/article/view/51993
- Hutkins, R. (2019). Microbiology and Technology of Fermented Food. Wiley Blac. Hoboken, NJ, USA: John Wiley & Sons, Inc; 618 p.
- James M, Velastegui E, Cruz MA. (2017). Evaluation of culture conditions of Lactobacillus acidophilus y Lactobacillus casei on laboratory scale, with inulin as carbon source. Bionatura, 2(1):235–40. Available from: http://revistabionatura.com/2017.02.01.4.html
- Jurado-Gámez H, Gúzman-Insuasty M, Jarrín-Jarrín V. (2015). Determinación de la cinética, pruebas de crecimiento y efecto de inhibición in vitro de Lactobacillus lactis en Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae y Escherichia coli. Rev la Fac Med Vet y Zootec, 62(2):40–56. Available from: https://revistas.unal.edu.co/index.php/remevez/article/view/51993
- Jurado-Gámez H, Martínez-Benavides J, Morillo-Garcés JA, Orbes-Villacorte AE, Mesías-Pantoja LN. (2016). Cinética de fermentación, pruebas de desafío in vitro y efecto de inhibición de Lactobacillus gasseri ATCC 19992. Vet y Zootecnía,10(2):72–89. Available from: http://vip.ucaldas.edu.co/vetzootec/downloads/v10n2a07.pdf
- Jurado-Gámez, H., Calpa-Yama, F., Chaspuengal-Tulcán, A. (2014). Determinación in vitro de la acción probiótica de Lactobacillus plantarum sobre Yersinia pseudotuberculosis aislada de Cavia porcellus. Rev la Fac Med Vet y Zootec. 61(3):241–57. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-29522014000300004&lng=en&nrm=iso&tlng=es
- Jurado-Gámez, H., Ramírez, C., Aguirre, D. (2013). Cinética de fermentación de Lactobacillus plantarum en un medio de cultivo enriquecido como potencial probiótico. Vet y Zootecnía. 7(2):37–53.
- Kanauchi M. (2019). Lactic Acid Bacteria: Methods and Protocols. Springer.
- Khamis, M., Mousa, M., Helmy, N. (2021). Methicillin-Resistant Staphylococcus aureus (MRSA) in some meat products. Alexandria J Vet Sci. 70(1):96–105. Available from: www.alexjvs.com
- Koohestani, M., Moradi, M., Tajik, H., Badali, A. (2018). Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Veterinary research forum, 9(4): 301–306. https://doi.org/10.30466/vrf.2018.33086
- Korcz E, Varga L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Vol. 110, Trends in Food Science and Technology. 2021. p. 375–84.
- Kunová G, Rada V, Lisová I, Ročková Š, Vlková E. (2011). In vitro Fermentability of Prebiotic Oligosaccharides by Lactobacilli. Czech J Food Sci. 29:49–54.
- Long, J., Du, G., Chen, J., Xie, C., Xu, J., Yuan, J. (2023). Bacteria and poisonous plants/fungi were the primary causative hazards of foodborne disease
- outbreaks: A five-year survey from Guangzhou, Guangdong. Int J Food Microbiol. 400(September 2022).
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the folin phenol reagent. J Biol Chem. Nov;193(1):265–75.
- May-Torruco LA, Corona-Cruz AI, Luna-Jiménez AL, González-Cortés N, Jiménez-Vera R. (2020). Sensibilidad y Resistencia a Antibióticos de Cepas Probióticas Empleadas en Productos Comerciales. Eur Sci J. Jun;16(18):43–60.
- Mendonca, A., Thomas-Popo, E., Gordon, A. (2020). Microbiological considerations in food safety and quality systems implementation. In: Food Safety and Quality Systems in Developing Countries. Academic P. London: Charlotte Cockle. p. 185–260.
- Montes Ramírez LM. (2013). Efecto de la microencapsulación con agentes prebióticos sobre la viabilidad de microorganismos probióticos (Lactobacillus
- } casei ATCC 393 y Lactobacillus rhamnosus ATCC 9469) [Internet]. Bogotá. p. 106. Available from: https://repositorio.unal.edu.co/handle/unal/11893
- Mora-Villalobos JA, Montero-Zamora J, Barboza N, Rojas-Garbanzo C, Usaga J, Redondo-Solano M, et al. (2020). Multi-Product Lactic Acid Bacteria Fermentations: A Review. Fermentation [Internet]. 6(23):21. Available from: https://www.ftb.com.hr/80-volume-44-issue-no-2/445-biotechnological-production-of-lactic-acid-
- Munera Cabal, G. (2020). Encapsulación de antimicrobianos naturales en sistemas nano y microestructurados: técnicas y aplicaciones en tecnología de alimentos [Internet]. [Valencia - España]: Universidad Politécnica de Valencia; [cited 2021 Dec 8]. Available from:
- https://riunet.upv.es/bitstream/handle/10251/148962/Munera - Encapsulación de antimicrobianos naturales en sistemas nano y microestructurados: técnic....pdf?sequence=2
- Osorio, M., Rizo-Tello, V., Sánchez, E., Prieto-Alvarado, F., Gómez, L. (2021) Brote de enfermedad transmitida por alimentos en una poblacion especal. Cali, Colombia 2021. Interdiscip J Epidimiologyology Public Heal. 4(2):1–8.
- Paim DRSF, Costa SDO, Walter EHM, Tonon R V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. Lwt [Internet]. 74:21–5. Available from: http://dx.doi.org/10.1016/j.lwt.2016.07.022
- Rajkovic A, Smigic N, Devlieghere F. (2010). Contemporary strategies in combating microbial contamination in food chain. Int J Food Microbiol [Internet]. 141 Suppl (SUPPL.). Available from: https://pubmed.ncbi.nlm.nih.gov/20056287/
- Rodrigues, F., Cedran, M., Bicas, J., Sato, H. (2019). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Res Int, 37:109682. Available from: https://doi.org/10.1016/j.foodres.2020.109682
- Rodríguez Barona S, Giraldo GI, Montes LM. (2016). Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebioticos. Inf tecnológica [Internet]. 27(6):135–44. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642016000600014&lng=en&nrm=iso&tlng=en
- Roldán Pérez, S., Gómez Rodríguez, S., Sepúlveda, J., Simón Ruiz, O., Márquez Fernández, M., Montoya Campuzano, O. (2023). Assessment of probiotic properties of lactic acid bacteria isolated from an artisanal Colombian cheese. Build Environ. 23(27): 3-34 https://doi.org/10.1016/j.buildenv.2020.107386
- Romero-Benavides DA, Morillo-Garces JA, Jurado-Gámez HA. (2016). Inhibición de Lactobacillus gasseri sobre Yersinia pseudotuberculosis bajo condiciones in vitro. Rev la Fac Med Vet y Zootec [Internet]. 63(2):95–112. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-29522016000200003&lng=en&nrm=iso&tlng=es
- Rosales-Bravo H, Vázquez-Martínezb J, Morales-Torres HC, Olalde-Portuga V. (2020). Evaluación de propiedades tecno-funcionales de cepas probióticas comerciales del género Lactobacillus. RIIIT Rev Int Investig e innovación tecnológica [Internet]. 8(45). Available from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-97532020000400001
- Salazar Salazar, Z., Hurtado Ayala, L. (2017). Pruebas de susceptibilidad a bacteriocinas producidas por BAL en bacterias resistentes a antibióticos. Rev Mex Ciencias Farm 48(1):7–17. http://www.redalyc.org/articulo.oa?id=57956614002
- Sánchez F E, Nuñez R D, Cruz L R, Torres M, Herrera E. (2017). Simulación y Conteo de Unidades Formadoras de Colonias. Rev electrónica Comput Informática, Biomédica y Electrónica. 6(1):97–111. Available from: https://www.redalyc.org/articulo.oa?id=512253717006
- Sánchez L, Omura M, Lucas A, Pérez T, Ferreira C de L. (2015). Cepas de Lactobacillus spp. con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Rev Salud Anim. 37(2):94–104. Available from: http://scielo.sld.cu/pdf/rsa/v37n2/rsa04215.pdf
- Schulte RH, Munson E. (2019). Staphylococcus aureus Resistance Patterns in Wisconsin: 2018 Surveillance of Wisconsin Organisms for Trends in Antimicrobial Resistance and Epidemiology (SWOTARE) Program Report. Clin Med Res [Internet]. 17(3–4):72–81. Available from: https://pubmed.ncbi.nlm.nih.gov/31582419/
- Serna Jimenez AJ. (2012). Elaboración De Jugos De Fruta Con Adición De Bacterias Ácido Lácticas Con Potencial Probiótico [Internet]. Universidad de la Sabana. Available from: intellectum.unisabana.edu.co:8080/jspui/bitstream/10818/3633/1/Johanna Serna Jimenez_157728.pdf
- Sinsajoa-Tepud M, Jurado-Gamez H, Narváez-Rodríguez M. (2019). Evaluación de Lactobacillus plantarum microencapsulado y su viabilidad bajo condiciones gastrointestinales simuladas e inhibición frente a Escherichia coli O157:H7. Rev la Fac Med Vet y Zootec. 66(3):231–44.
- Stewart, G. (2017). Chapter 18 - Staphylococcal Food Poisoning. Foodborne Dis. 367–80. Available from: http://dx.doi.org/10.1016/B978-0-12-385007-2.00018-8
- Sultana M, Chan ES, Janarthanan P, Choo WS. (2023). Functional orange juice with Lactobacillus casei and tocotrienol-enriched flaxseed oil co-encapsulation: Physicochemical properties, probiotic viability, oxidative stability, and sensorial acceptability. Available from https://www.sciencedirect.com/science/article/pii/S0023643823009672
- Tagg, J., McGiven, A. (1971). Assay System for Bacteriocins. Appl Microbiol;21(5):943–943. Available from: https://journals.asm.org/journal/am
- Taylor, M., Zhu, M. (2021). Control of Listeria monocytogenes in low-moisture foods. Trends Food Sci Technol. Oct 1;116:802–14.
- Torres, G., Vargas, K., Reyes-Vélez, J., Jiménez, N., Blanchard, A., Olivera-Angel, M. (2023). High genetic diversity and zoonotic potential of Staphylococcus aureus strains recovered from bovine intramammary infections in Colombians dairy herds. Comp Immunol Microbiol Infect Dis. 93(52) 3-34
- Torres, G., Vargas, K., Sánchez-Jiménez, M., Reyes-Velez, J., Olivera-Angel, M. (2019). Genotypic and phenotypic characterization of biofilm production by Staphylococcus aureus strains isolated from bovine intramammary infections in Colombian dairy farms. Heliyon. 5(10): 34-45.
- Vallejo M, Ledesma P, Anselmino L, Marguet E. (2014). Efecto de las condiciones de crecimiento y composición del medio de cultivo sobre la producción de bacteriocina de Enterococcus mundtii Tw56 Effect of growth conditions and culture medium composition on bacteriocin production by Enterococcus mundtii Tw56. Vol. 16, Rev. Colomb. Biotecnol.
- Vera Mejía R, Sánchez Miranda L, Zambrano Gavilares P, Rodriguez Perdomo Y. (2021). Obtención de un candidato a probiótico de Lactobacillus plantarum 22 LMC a partir de un medio de cultivo natural con materias primas agroindustriales. Rev Salud Anim [Internet], 43(3):1–6. Available from: http://revistas.censa.edu.cu/index.php/RSA/article/view/1176
- Zheng, Y., Gracia, A., Hu, L. (2023). Predicting Foodborne Disease Outbreaks with Food Safety Certifications: Econometric and Machine Learning Analyses. Journal Food Protein [Internet]. 86(9):100136. Available from: https://doi.org/10.1016/j.jfp.2023.100136