Modelos autorregresivos vectoriales integrados con volatilidad estocástica multivariada aplicado a la economía de estados unidos en el periodo de 1948-2019
Publicado 2024-11-20
Palabras clave
- Volatilidad Estocástica, VAR-MSV, Muestreador multi-move
Cómo citar
Resumen
Los modelos autorregresivos vectoriales (VAR) han demostrado ser eficientes para capturar las relaciones dinámicas de las series de tiempo multivariadas. Los modelos de volatilidad estocástica multivariada (MSV) muestran ser útiles para modelar la varianza cuando cambia en el tiempo. Por lo anterior, en este artículo se propone la integración de un modelo VAR con un modelo MSV (VAR-MSV). La elección del VAR-MSV más adecuado se lleva a cabo por medio del Criterio de Información de Desviación (DIC). Se hizo una aplicación a dos variables macroeconómicas clave para los Estados Unidos. Se agregó el índice del mercado de valores SP500 y se interpretaron los resultados. Para estimar los parámetros se usan métodos de Monte Carlo vía Cadenas de Markov (MCMC). Los resultados indican que el modelo VAR-MSV captura las relaciones dinámicas, así como la varianza cambiando en el tiempo de manera eficaz.
Descargas
Citas
- Benati, L. (2008). The great moderation in the United Kingdom. Journal of Money, Credit and Banking, 40(1), 121–147.
- Chiu, C.-W. (., Mumtaz, H., & Pintér, G. (2017). Forecasting with VAR models: Fat tails and stochastic volatility. International Journal of Forecasting, 33, 1124–1143.
- Clark, T. E. (2011). Real-time density forecasts from bayesian vector autoregressions with stochastics volatility. Journal of Business & Economic Statistics, 29(3), 327–341.
- Clark, T. E., & Ravazzolo, F. (2015). Macroeconomic forecasting performance under alternative specifications of time-varying volatility. Journal of Applied Econometrics, 30(4), 551–575.
- Cogley, T. (2005). How fast can the new economy grow? A bayesian analysis of the evolution of trend growth. Macroeconomics, 27, 179–207.
- Cogley, T., & Sargent, T. J. (2005). Drifts and volatilities: monetary policies and outcomes in the post WWII US. Review of Economic Dynamics, 8, 262–302.
- D'Agostino, A., Gambetti, L., & Giannone, D. (2013). Macroeconomic forecasting and structural change. Journal of Applied Econometrics, 28(1), 82–101.
- Ding, Q., Huang, J., & Zhang, H. (2021). The time-varying effects of financial and geopolitical uncertainties on commodity market dynamics: A TVP-SVAR-SV analysis. Resources Policy, 72.
- Doan, T., Litterman, R., & Sims, C. A. (1984). Forecasting and conditional proyection using realistic prior distributions. Econometric Reviews, 3, 1–100.
- Durbing, J., & Koopman, S. J. (2002). A Simple and Efficient Simulation Smoother for State Space Time Series Analysis. Biometrika., 89, 603–616.
- Gali, J., & Gambetti, L. (2009). On the sources of the great moderation. American Economic Journal: Macroeconomics, 1(1), 26–57.
- Ishihara, T., & Omori, Y. (2012). Efficient bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors. Computational statistics and data analysis, 56(11), 3674–9473.
- Jacquier, E., Polson, N., & Rossi, P. (2004). Bayesian analysis of stochastic volatility models with fat tails and correlated errors. Journal of econometrics, 122, 185–212.
- Jong, P., & Shephard, N. (1995). The Simulation Smoother for Time Series Models. Biometrika., 82, 339–350.
- Jore, A. S., Mitchell, J., & Vahey, S. P. (2010). Combining forecast densities from VARs with uncertain instabilities. Journal of Applied Econometrics, 25, 621-634.
- Koopman, S. J. (1993). Disturbance Smoother for State Space Models. Biometrika., 80, 117–126.
- Litterman, R. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business and Economic Statistics., 4, 25–38.
- Lutkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.
- Mumtaz, H. (2018). A generalized stochastic volatility in mean VAR. Economice Letters, 173, 10–14.
- Mumtaz, H. (2020, July). A Generalised Stochastic Volatility in Mean VAR. An Updated Algorithm. Working Papers, Queen Mary University of London, School of Economics and Finance.
- Nakajima, J. (2011). Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications. Monetary and Economic Studies, 29, 107-142.
- Omori, Y., Shephard, N., & Nakajima, J. (2007). Stochastic Volatility with Leverage: Fast and Efficient Likelihood Inference. Jurnal of Econometrics, 140(2), 425-449.
- Primiceri, G. C. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72, 821–852.
- Shephard, N., & K.Pitt, M. (1999). Time varying covariances: a factor stochastic volatility approach. In Bayesian Statistics 6, Proceedings of the Sixth Valencia International Meeting ((edited by J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M Smith) ed., pp. 547-570). Oxford: Oxford University Press.
- Shephard, N., & Pitt, M. K. (1997). Likelihood analysis of non-gaussian measurement time series. Biometrika, 84, 653–667.
- Sims, C. A. (1972a). Money, Income, and Causality. American Economic Review, 62 (4), 540–552.
- Sims, C. A. (1972b). The Role of Aproximate Prior Restrictions in Distributed Lag Estimation. Journal of the American Statistical Association, 67 (337), 169–175.
- Sims, C. A. (1980a). Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered. American Economic Review., 70 (2), 250–257.
- Sims, C. A. (1980b). Macroeconomics and Reality. Econometrica, 48(1), 1–48.
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639.
- Stock, J. H., & W.Watson, M. (2003, September). Forecasting Output and Inflation: The Role of Asset Prices. Journal of Economic Literature, 41, 788-829.
- Triantafyllopoulos, K. (2011). Time-varying vector autoregressive models with volatility. Journal of Applied Statistics, 38(2), 369–382.
- Uhlig, H. (1997). Bayesian vector autoregressions with stochastic volatility. Econometrica, 65(1), 59–72.