Formación de celdas de manufacturas dinámicas para la toma de decisiones en el diseño de instalaciones industriales: una revisión
Publicado 2020-06-03
Palabras clave
- Celdas de manufactura dinámicas,
- planeación y diseño de instalaciones,
- problema de formación de celdas de manufactura,
- corporativo
Cómo citar
Resumen
Este artículo presenta una revisión de literatura con el fin de caracterizar el Problema de Formación de Celdas de Manufactura Dinámicas, realizando la identificación de los criterios de optimización, las principales restricciones consideradas y los métodos de solución más usados. Para ello, se condujo una adaptación de la declaración PRISMA para revisiones sistemáticas, en conjunto con una metodología bola de nieve para la selección de los estudios a analizar; la búsqueda de documentos se realiza en las bases de datos Web of Science y Scopus, considerando una ventana de tiempo entre 2007 y 2019. Como resultados generales, se encuentra que la minimización de costos es el criterio de optimización utilizado con mayor frecuencia y que las restricciones usualmente consideradas están asociadas a la secuencia de operaciones, averías de máquinas, y variación del tamaño de lote de procesamiento. De otra parte, considerando la naturaleza altamente combinatoria de los problemas de optimización revisados, se encuentra que los métodos de solución metaheurísticos utilizados en mayor medida son algoritmos genéticos, y recocido simulado. Finalmente, se determinan tres tendencias de investigación primero, la incorporación de dos o más criterios de optimización en una formulación matemática; segundo, el desarrollo e implementación de algoritmos metaheurísticos híbridos y; tercero, la evaluación de los métodos de solución existentes a partir de problemas de referencia o aplicaciones industriales reales.
Descargas
Citas
- Aghajani, A., Ahmadi Didehbani, S., Zadahmad, M., Hasan Seyedrezaei, M., & Mohsenian, O. (2014). A multi-objective mathematical model for cellular manufacturing systems design with probabilistic demand and machine reliability analysis. International Journal of Advanced Manufacturing Technology, 75, 755–770. https://doi.org/10.1007/s00170-014-6084-0
- Aghajani, M., Keramati, A., Moghadam, R. T., & Mirjavadi, S. S. (2016). A mathematical programming model for cellular manufacturing system controlled by kanban with rework consideration. International Journal of Advanced Manufacturing Technology, 83(5–8), 1377–1394. https://doi.org/10.1007/s00170-015-7635-8
- Ah kioon, S., Bulgak, A. A., & Bektas, T. (2009). Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. European Journal of Operational Research, 192(2), 414–428. https://doi.org/10.1016/j.ejor.2007.09.023
- Ahkioon, S., Bulgak, A. A., & Bektas, T. (2009). Cellular manufacturing systems design with routing flexibility, machine procurement, production planning and dynamic system reconfiguration. International Journal of Production Research, 47(6), 1573–1600. https://doi.org/10.1080/00207540701581809
- Amiri, A. S., & Ghodsi, R. (2010). A variable neighborhood search method for an integrated cellular manufacturing systems with production planning and system reconfiguration. AMS2010: Asia Modelling Symposium 2010 - 4th International Conference on Mathematical Modelling and Computer Simulation, 181–186. https://doi.org/10.1109/AMS.2010.47
- Arıkan, F., & Güngör, Z. (2009). Modeling of a manufacturing cell design problem with fuzzy multi-objective parametric programming. Mathematical and Computer Modelling, 50(3–4), 407–420. https://doi.org/10.1016/j.mcm.2009.04.017
- Aryanezhad, M., Deljoo, V., & Mirzapour Al-e-hashem, S. (2009). Dynamic cell formation and the worker assignment problem: a new model. The International Journal of Advanced Manufacturing Technology, 41(3–4), 329–342. https://doi.org/10.1007/s00170-008-1479-4
- Azadeh, A., Pashapour, S., & Abdolhossein Zadeh, S. (2016). Designing a cellular manufacturing system considering decision style, skill and job security by NSGA-II and response surface methodology. International Journal of Production Research, 54(22), 6825–6847. https://doi.org/10.1080/00207543.2016.1178407
- Bajestani, M. A., Rabbani, M., Rahimi-Vahed, A. R., & Khoshkhou, G. B. (2009). A multi-objective scatter search for a dynamic cell formation problem. Computers & Operations Research, 36, 777–794. https://doi.org/10.1016/j.cor.2007.10.026
- Balakrishnan, J., & Cheng, C. H. (2007). Multi-period planning and uncertainty issues in Cellular Manufacturing: a review and future directions. European Journal of Operational Research, 177, 281–309.
- Boulif, M., & Atif, K. (2008). A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies. International Journal of Approximate Reasoning. https://doi.org/10.1016/j.ijar.2007.03.003
- Chang, C., Wu, T., & Wu, C. (2013). An efficient approach to determine cell formation , cell layout and intracellular machine sequence in cellular manufacturing systems. Computers & Industrial Engineering, 66(2), 438–450. https://doi.org/10.1016/j.cie.2013.07.009
- Chung, S., Wu, T., & Chang, C. (2011). An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations q. Computers & Industrial Engineering, 60(1), 7–15. https://doi.org/10.1016/j.cie.2010.08.016
- Darla, S. P., Naiju, C. D., & Sagar, P. V. (2014). Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm. January. https://doi.org/10.19026/rjaset.7.235
- Defersha, F., & Chen, M. (2008). A parallel genetic algorithm for dynamic cell formation in cellular manufacturing systems. International Journal of Production Research, 46(22), 6389–6413. https://doi.org/10.1080/00207540701441962
- Deljoo, V., Mirzapour Al-e-hashem, S. M. J., Deljoo, F., & Aryanezhad, M. B. (2010). Using genetic algorithm to solve dynamic cell formation problem. Applied Mathematical Modelling. https://doi.org/10.1016/j.apm.2009.07.019
- Du, J., Wang, G., Yan, Y., & Sang, Q. (2013). Tabu Search-based Formation of Reconfigurable Manufacturing Cells Jingjun Du 1,. Applied Mechanics an Materials, 400(1), 34–41. https://doi.org/10.4028/www.scientific.net/AMM.397-400.34
- Fan, J., & Cao, M. (2013). Study on the quasi-dynamic cell-formation problem. Journal of Applied Sciences. https://doi.org/10.3923/jas.2013.2813.2818
- Fan, J., & Feng, D. (2013). Design of cellular manufacturing system with quasi-dynamic dual resource using multi-objective GA. International Journal of Production Research. https://doi.org/10.1080/00207543.2012.748228
- Feng, H., Xi, L., Xia, T., & Pan, E. (2018). Concurrent cell formation and layout design based on hybrid approaches. Applied Soft Computing Journal, 66, 346–359. https://doi.org/10.1016/j.asoc.2018.02.021
- Garavito-Hernandez, E. A., Talero-Sarmiento, L. H., & Escobar-Rodriguez, L. Y. (2019). Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura. INGE CUC, 15(2), 155–167. https://doi.org/10.17981/ingecuc.15.2.2019.15
- Gholipour-kanani, Y., Tavakkoli-moghaddam, R., & Khorrami, A. (2011). Solving a multi-criteria group scheduling problem for a cellular manufacturing system by scatter search. 0669. https://doi.org/10.1080/10170669.2010.549663
- Iqbal, A., & Al-Ghamdi, K. A. (2018). Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration. Energy, 163, 863–872. https://doi.org/10.1016/j.energy.2018.08.168
- Jabal-Ameli, M. S., & Moshref-Javadi, M. (2015). Concurrent cell formation and layout design using scatter search. International Journal of Advanced Manufacturing Technology, 71(1–4), 1–22. https://doi.org/10.1007/s00170-013-5342-x
- Javadian, N., Aghajani, A., Rezaeian, J., & Ghaneian Sebdani, M. J. (2011). A multi-objective integrated cellular manufacturing systems design with dynamic system reconfiguration. International Journal of Advanced Manufacturing Technology, 56, 307–317. https://doi.org/10.1007/s00170-011-3164-2
- Jayakumar, V., & Raju, R. (2010). An adaptive cellular manufacturing system design with routing flexibility and dynamic system reconfiguration. European Journal of Scientific Research, 47(4), 595–611.
- Jayakumar, V., & Raju, R. (2014). A Simulated Annealing Algorithm for Machine Cell Formation Under Uncertain Production Requirements. Arabian Journal for Science and Engineering, 39(10), 7345–7354. https://doi.org/10.1007/s13369-014-1306-1
- Jolai, F., Taghipour, M., & Javadi, B. (2011). A variable neighborhood binary particle swarm algorithm for cell layout problem. 327–339. https://doi.org/10.1007/s00170-010-3039-y
- Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers and Operations Research. https://doi.org/10.1016/j.cor.2012.01.012
- Liu, C., & Wang, J. (2016). Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing. International Journal of Computational Intelligence Systems, 9(4), 765–777. https://doi.org/10.1080/18756891.2016.1204123
- Liu, C., Wang, J., & Leung, J. Y. T. (2018). Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering facility transfer and production planning. Applied Soft Computing Journal, 62, 602–618. https://doi.org/10.1016/j.asoc.2017.10.034
- Maleki, R., Ketabi, S., & Rafiei, F. M. (2018). Grouping both machines and parts in cellular technology by Genetic Algorithm. Journal of Industrial and Production Engineering, 1015, 1–11. https://doi.org/10.1080/21681015.2017.1411402
- Mehdizadeh, E., Daei Niaki, S. V., & Rahimi, V. (2016). A vibration damping optimization algorithm for solving a new multi-objective dynamic cell formation problem with workers training. Computers and Industrial Engineering. https://doi.org/10.1016/j.cie.2016.08.012
- Niakan, F., Baboli, A., Moyaux, T., & Botta-Genoulaz, V. (2016). A new multi-objective mathematical model for dynamic cell formation under demand and cost uncertainty considering social criteria. Applied Mathematical Modelling. https://doi.org/10.1016/j.apm.2015.09.047
- Rabbani, M., Farrokhi-Asl, H., Rafiei, H., & Khaleghi, R. (2017). Using metaheuristic algorithms to solve a dynamic cell formation problem with consideration of intra-cell layout design. Intelligent Decision Technologies, 11, 109–126. https://doi.org/10.3233/IDT-160281
- Rheault, M., Drolet, J. R., & Abdulnour, G. (1995). Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment. Computers and Industrial Engineering, 29(1–4), 221–225. https://doi.org/10.1016/0360-8352(95)00075-C
- Saeidi, S., Solimanpur, M., & Mahdavi, I. (2014). A multi-objective genetic algorithm for solving cell formation problem using a fuzzy goal programming approach. 1635–1652. https://doi.org/10.1007/s00170-013-5392-0
- Safaei, N., Saidi-Mehrabad, M., Tavakkoli-Moghaddam, R., & Sassani, F. (2008). A fuzzy programming approach for a cell formation problem with dynamic and uncertain conditions. Fuzzy Sets and Systems, 159, 215–236. https://doi.org/10.1016/j.fss.2007.06.014
- Sahin, Y. B., & Alpay, S. (2016). A metaheuristic approach for a cubic cell formation problem. Expert Systems With Applications, 65, 40–51. https://doi.org/10.1016/j.eswa.2016.08.034
- Saidi-Mehrabad, M., & Safaei, N. (2007). A new model of dynamic cell formation by a neural approach. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-006-0518-2
- Sarayloo, F., & Tavakkoli-Moghaddam, R. (2010a). Imperialistic competitive algorithm for solving a dynamic cell formation problem with production planning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-14922-1_34
- Sarayloo, F., & Tavakkoli-Moghaddam, R. (2010b). Multi Objective Particle Swarm Optimization for a Dynamic Cell Formation Problem. World Congress of Engineering, 3.
- Satoglu, S. I., Durmusoglu, M. B., & Ertay, T. (2010). A mathematical model and a heuristic approach for design of the hybrid manufacturing systems to facilitate one-piece flow. 7543. https://doi.org/10.1080/00207540903089544
- Saxena, L. K., & Jain, P. K. (2011). Dynamic cellular manufacturing systems design—a comprehensive model. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-010-2842-9
- Shafigh, F., Defersha, F. M., & Moussa, S. E. (2017). A linear programming embedded simulated annealing in the design of distributed layout with production planning and systems reconfiguration. International Journal of Advanced Manufacturing Technology, 88(1–4), 1119–1140. https://doi.org/10.1007/s00170-016-8813-z
- Shahdi-Pashaki, S., Teymourian, E., & Tavakkoli-Moghaddam, R. (2018). New approach based on group technology for the consolidation problem in cloud computing-mathematical model and genetic algorithm. Computational and Applied Mathematics, 37(1), 693–718. https://doi.org/10.1007/s40314-016-0362-4
- Soolaki, M. (2012). A multi-objective integrated cellular manufacturing systems design with production planning, worker assignment and dynamic system reconfiguration. International Journal of Industrial and Systems Engineering. https://doi.org/10.1504/IJISE.2012.049412
- Subhaa, R., & Natarajan, J. (2018). Service level-based production smoothening model for robust cellular manufacturing system. International Journal of Advanced Manufacturing Technology, 94(1–4), 475–496. https://doi.org/10.1007/s00170-017-0863-3
- Tavakkoli-Moghaddam, R., Minaeian, S., & Rabbani, M. (2007). A new multi-objective model for dynamic cell formation problem with fuzzy parameters. IJE Transactions A: Basics, 21(2).
- Tavakkoli-Moghaddam, R., Rahimi-Vahed, A. R., Ghodratnama, A., & Siadat, A. (2009). A simulated annealing method for solving a new mathematical model of a multi-criteria cell formation problem with capital constraints. Advances in Engineering Software. https://doi.org/10.1016/j.advengsoft.2008.04.008
- Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2008). A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing. Journal of the Operational Research Society. https://doi.org/10.1057/palgrave.jors.2602436
- Tavakkoli, R., Ranjbar, M., Amin, G. R., & Siadat, A. (2012). A cell formation problem considering machine utilization. 1127–1139. https://doi.org/10.1007/s10845-010-0395-2
- Torkul, O., & Ustun, O. (2015). Proposal of a nonlinear multi-objective genetic algorithm using conic scalarization to the design of cellular manufacturing systems. 30–57. https://doi.org/10.1007/s10696-014-9194-y
- Urrutia, G., & Bonfill, X. (2011). Declaración PRISMA : una propuesta para mejorar la publicaciónn de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015
- Vafaeinezhad, M., Kia, R., & Shahnazari-Shahrezaei, P. (2016). Robust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization. Journal of Industrial Engineering International, 12, 45–60. https://doi.org/10.1007/s40092-015-0127-5
- Venkatadri, U., Elaskari, S. M., & Kurdi, R. (2017). A multi-commodity network flow-based formulation for the multi-period cell formation problem. International Journal of Advanced Manufacturing Technology, 91, 175–187. https://doi.org/10.1007/s00170-016-9673-2
- Wang, X., Tang, J., & Yung, K.-L. (2009). Optimization of the multi-objective dynamic cell formation problem using a scatter search approach. International Journal of Advanced Manufacturing Technology, 44, 318–329. https://doi.org/10.1007/s00170-008-1835-4
- Wang, X., Tang, J., & Yung, K. (2010). A scatter search approach with dispatching rules for a joint decision of cell formation and parts scheduling in batches. 7543. https://doi.org/10.1080/00207540902922828
- Xiaoqing, W., Jiafu, T., Jun, G., & Mei, C. (2008). A Nonlinear Multi-Objective Model of Dynamic Cell Formation. Chinese Control Ad Decision Conference.
- Zohrevand, A. M., Rafiei, H., & Zohrevand, A. H. (2016). Multi-objective dynamic cell formation problem: A stochastic programming approach. Computers & Industrial Engineering, 98, 323–332. https://doi.org/10.1016/j.cie.2016.03.026